Inverse portfolio problem with mean-deviation model

نویسندگان

  • Bogdan Grechuk
  • Michael Zabarankin
چکیده

A Markowitz-type portfolio selection problem is to minimize a deviation measure of portfolio rate of return subject to constraints on portfolio budget and on desired expected return. In this context, the inverse portfolio problem is finding a deviation measure by observing the optimal mean-deviation portfolio that an investor holds. Necessary and sufficient conditions for the existence of such a deviation measure are established. It is shown that if the deviation measure exists, it can be chosen in the form of a mixed CVaR-deviation, and in the case of n risky assets available for investment (to form a portfolio), it is determined by a combination of (n + 1) CVaRdeviations. In the later case, an algorithm for constructing the deviation measure is presented, and if the number of CVaR-deviations is constrained, an approximate mixed CVaR-deviation is offered as well. The solution of the inverse portfolio problem may not be unique, and the investor can opt for the most conservative one, which has a simple closed-form representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIPERIOD CREDIBILITIC MEAN SEMI-ABSOLUTE DEVIATION PORTFOLIO SELECTION

In this paper, we discuss a multiperiod portfolio selection problem with fuzzy returns. We present a new credibilitic multiperiod mean semi- absolute deviation portfolio selection with some real factors including transaction costs, borrowing constraints, entropy constraints, threshold constraints and risk control. In the proposed model, we quantify the investment return and risk associated with...

متن کامل

MEAN-ABSOLUTE DEVIATION PORTFOLIO SELECTION MODEL WITH FUZZY RETURNS

In this paper, we consider portfolio selection problem in which security returns are regarded as fuzzy variables rather than random variables. We first introduce a concept of absolute deviation for fuzzy variables and prove some useful properties, which imply that absolute deviation may be used to measure risk well. Then we propose two mean-absolute deviation models by defining risk as abs...

متن کامل

A new quadratic deviation of fuzzy random variable and its application to portfolio optimization

The aim of this paper is to propose a convex risk measure in the framework of fuzzy random theory and verify its advantage over the conventional variance approach. For this purpose, this paper defines the quadratic deviation (QD) of fuzzy random variable as the mathematical expectation of QDs of fuzzy variables. As a result, the new risk criterion essentially describes the variation of a fuzzy ...

متن کامل

Inverse portfolio problem with coherent risk measures

In general, a portfolio problem minimizes risk (or negative utility) of a portfolio of financial assets with respect to portfolio weights subject to a budget constraint. The inverse portfolio problem then arises when an investor assumes that his/her risk preferences have a numerical representation in the form of a certain class of functionals, e.g. in the form of expected utility, coherent risk...

متن کامل

Developing a multi objective possibilistic programming model for portfolio selection problem

Portfolio selection problem is one of the most important issues in the area of financial management in which is attempted to allocate wealth to different assets with controlling the return and risk. The aim of this paper is to obtain the optimum portfolio with regard to the cardinality and threshold constraints. In the paper, a novel multi-objective possibilistic programming model is developed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 234  شماره 

صفحات  -

تاریخ انتشار 2014